On subgrid-scale physics in the convective atmospheric surface layer

نویسندگان

  • Khuong Nguyen
  • Khuong Xuan Nguyen
  • Nigel B. Kaye
چکیده

The dynamics of the subgrid-scale (SGS) stress and scalar flux in the convective atmospheric surface layer are studied using field measurements from the Advection Horizontal Array Turbulence Study (AHATS). We extend the array technique previously used to evaluate the SGS velocity and temperature to include measurements of the fluctuating pressure, enabling separation of the resolvableand subgrid-scale pressure and allowing for the first-ever observations of the pressure covariance terms and the full SGS budgets. Non-dimensional forms of the budget terms are analysed as functions of the surface-layer stability parameter, z/L, and the ratio of the wavelength of the spectral peak of the vertical velocity to the filter width, Λw/∆f , a measure of the largeeddy simulation (LES) fidelity. Analyses of the mean SGS turbulence kinetic energy budget show a balance among the production, transport, and dissipation. The mean SGS shear stress and SGS temperature flux budgets, meanwhile, are dominated by the production and pressure destruction, with the latter causing return to isotropy. The budgets of the normal components of the SGS stress are more complex. Most notably the pressure–rate-of-strain includes two competing processes, return to isotropy and generation of anisotropy, the latter due to ground blockage of the large-scale convective eddies. For neutral surface layers, return to isotropy dominates. For unstable surface layers return to isotropy dominates for small filter widths, whereas for large filter widths the ground blockage effect dominates, resulting in strong anisotropy. Analyses of the terms in the budgets of the conditional mean SGS stress and SGS scalar flux, which must be correctly predicted by the SGS model in order for LES to reproduce the resolvablescale velocity and temperature probability density functions, further reveal the complex dependence of the SGS pressure–rate-of-strain on the updrafts generated by buoyancy, downdrafts associated with the returning flow, and wall blocking effects. Under conditions of strong convective instability, the results most notably show conditional pressure redistribution from the (smaller) vertical to the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing

The modeling of the atmospheric boundary layer during convective conditions has long been a major source of uncertainty in the numerical modeling of meteorological conditions and air quality. Much of the difficulty stems from the large range of turbulent scales that are effective in the convective boundary layer (CBL). Both small-scale turbulence that is subgrid in most mesoscale grid models an...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues

[1] A simulation of a diurnal cycle of atmospheric boundary layer (ABL) flow over a homogeneous terrain is performed using large-eddy simulation (LES) with the Lagrangian scale-dependent dynamic subgrid-scale model. The surface boundary condition is derived from the field observations of surface heat flux from the HATS experiment (Horst et al., 2004; Kleissl et al., 2004). The simulation result...

متن کامل

Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness

[1] A new generation large-eddy simulation (LES), based on a Lagrangian scaledependent dynamic subgrid model, is applied to neutral atmospheric flow over heterogeneous land surfaces. This LES is faithful to the physics of the interaction of the lower atmosphere and the land surface based on classical validation tests of the simulated mean wind profile and the atmospheric turbulence. Simulations...

متن کامل

Convective Momentum Transport Associated with the Madden–Julian Oscillation Based on a Reanalysis Dataset

A better understanding of multiscale interactions within the Madden–Julian oscillation (MJO), including momentum exchanges, is critical for improved MJO prediction skill. In this study, convective momentum transport (CMT) associatedwith theMJO is analyzed based on theNOAAClimate Forecast SystemReanalysis (CFSR). A three-layer vertical structure associated with the MJO, as previously suggested i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016